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AbstracL Clustered motion of panicles is found in Hamiltonian dynamics of symplectic 
coupled map syslems. The 
molion is chaotic but ts distinguishable from random chaotic molion. Lyapunov analysis 
distinguishes global instability fmm local fluctuations. flustered motions have finile 
lifetime. They have fractal geometric slructure in lhe phase space, as the orbits are 
trapped U) ruins of KAM tori and islands. 

Panicles assemble and move with amng correlation. 

1. Introduction 

Order and chaos are often considered to be opposite notions in nature. One may 
associate order with stable and regular behaviour, and chaos with unstable and 
random behaviour. In this paper we discuss a new kind of cluster-like order in 
Hamiltonian systems which is at the same time chaotic. 

Ordering processes are typically found in dissipative systems, where, after 
sufficiently long time, the dynamics leads to an ordered state represented by an 
attractor. Most studies on pattern formation belong to this class of transient process 
towards ordered attractors. For such systems ordering is a rather trivial evolution, 
since the dynamics is such that the system evolves in the direction of increasing order. 
On the other hand, order formation in Hamiltonian systems is non-trivial, because 
long-time behaviour of Hamiltonian systems is considered to be well described by 
thermal equilibrium. 

Hamiltonian systems and their chaotic dynamics have been intensively stud- 
ied [1,2]. The phase space of typical Hamiltonian systems is known to have both 
regular and irregular orbits. Regular orbits consist of KAM tori and islands, which 
correspond to quasi-periodic motion, whereas irregular ones represent chaotic orbits. 
For Hamiltonian systems with many degrees of freedom, local instability often leads 
the system to uniformly random states, i.e. thermal equilibrium. 

Uniform thermalization, however, is not the on& feature of chaotic motion 
in Hamiltonian systems. Order formation must be an emergent property in 
a Hamiltonian system, as is seen in astrophysics (globular stellar clusters), 
microclusters [3], and in many other fields. Even pattern formation in dissipative 
systems should be initially described by a Hamiltonian system, if we start from a 
molecular level description. 
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This paper is organized as follows. In the next section, a symplectic map model is 
introduced for the ordering in Hamiltonian system. "he discovery of clustered motion 
k reported in section 3, with its qualitative aspects. Lyapunov spectra and vectors 
of the model are examined section 4 and confirm that our model has two kinds 

from local fluctuation of particles. In  section 5 we study the origin of smbility of the 
clustered motion by examining their lifetimes, phase space structure, and fluctuation 
properties. The clustered motion is then found to be sticky to ruins of KAM tori and 
islands. The last section is devoted to summary and discussion. 
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2. Model 

In this paper we introduce a very simple model giving rise to order formation 
within Hamiltonian dynamics. We use a symplectic version of a coupled map lattice. 
Coupled map lattices are models defined on discrete space and time, so that they 
are particularly suitable for numerical investigation of phenomena in which long time 
behaviour is important [4-121. 

We have N particles in our model (sec figure 1). Each particle is on a unit circle, 
and the state of each particle is defined by its phase (position) Znxi and its conjugate 
momentum pi. Bmporal evolution is defined by 

I ~- .. 
[z;, pi) ++ (z:, p i  j z = l , L ,  ..., IV 

N 
p: = Pi + x s i n 2 x ( r j  - x i )  li > D 

2 x m  j=, 

xi = xi f pi. 

Since ET > 0, the interaction term ( K / Z x m ) s i n  2 n ( x j  - 2;) between two 
particles i and j is accraclive. 

This model includes the interaction between every pair of elements as in a 
gas, in contrast with the lattice type modelling. In a lattice model with a short- 
range interaction, a tendency to thennalization with uniform ergodic behaviour h 
observed [4, lo]. Although our model has a longranged gas-type interaction, our 
observation of a clustered state is also seen in a short-ranged gas-type interaction [13]. 

The model (1) satisfies the symplectic condition 

so that the model can be regarded as a Poinark map for a Hamiltonian system with 
N + 1 degrees of freedom. Another interpretation of our model is as a 'kicked' 
Hamiltonian, as in the standard mapping [l]. 
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The total momentum is a mnstant of motion of the model (1) 

5 p j  = constant 
j=1 

(3) 

so that the N degrees of freedom are dmmposed into le( N - l), where ‘1‘ stands 
for the linear motion of the centre of mass. For N = 2, our model is reduced to 
the standard map of Chirikw and ’Eiylor. The mupling constant A’ is scaled by 

so that the model is expected to show extensive behaviour in the strongly 
chaotic regime K 2 1. In this regime correlation among particks is negligible and 
the force. terms ( 2 ~ m ) - ~ K C : _ , s i n  [ 2 ~ ( z , ( t )  - x i ( t ) ) ]  can be approximated 
by stochastic variables independent of the system size N .  This approximation leads 
to proportionality of the diffusion wefficient to K2, which is numerically confirmed 
for K 2 1 [4]. 

In this paper, we study a case with K < 1 where the motion of the particles 
forms a cluster. 

3. Clustered state of particles 

Figure 2 shows a typical example of clustered motion in the model (1). Particles 
initially distributed over a unit circle (with almost zero momenta) gradually move 
together to form a macro cluster. Some particles may not participate in cluster 
formation and wander around the cluster. These particles increase the entropy of 
the spatial configuration and serve to stabilize the clustered state. They play a role 
of effective dissipation for the dynamics of clustered motion, just like the ‘halo’ 
structure of globular stellar clusters. Roughly speaking, particles in a cluster show 
mutually oscillatory behaviour as is seen in chaos near elliptic (fixed) points. In our 
example the number of particles in the cluster is rather large (typically N - 2 to N). 

0 ‘TIME “ 0 0  

Ngum 2. A typical example of clustered motion of the model (1). System size N = 12, 
and K = 0.1. Initial condition is chosen to be z, = random, homogeneously distributed 
over [O, l), and p i  = 0. 

‘Absorption’ or ‘evaporation’ of a particle to/from a cluster is also possible. In a 
weak nonlinear regime with a small number of particles, we have often observed 
temporal switches between N-particle-cluster and ( N  - 1)-particle-cluster states 
through absorption and evaporation. Exchange of particles between a cluster and 
wandering states can occur, although the fluctuation in the number of particles in a 
cluster is very small. 
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0 'TIME ;200 

Flgvm 3. Random motion of the model (1). All parameters are the Same as figure 2. 
acept that initial mndition is pi  = random homogeneously dislributed mer [ - O S ,  0.5). 

The degree of clustering is evaluated by calculating the following quantity 

N if all zj's are the same ( fully clustered) 
= ( 0  if zj's are uniformly distributed. (5) 

A useful relation for Z is 

which means that the value of 2 is unity for uncorrelated random motions (see 
figure 3). The 6 function mmes from the conservation of total momentum (3). The 
relation (6) serves as a criterion for clustering as 

a state is called 'clustered' 'k! Z > 1. (7) 

4. Lyapunov analysis 

The clustered motion in figure 2 appears to be rather regular. It is, however, chaotic, 
as we can see from the Lyapunov spectra. 

The Lyapunov spectrum is a characteristic of asymptotic orbital instability of 
dynamical systems. It is a set of real numbers with 2 N  elements {A , ,  .... A Z N )  
defined by the eigenvalue spectrum of the squared Jacobi matrix 

{eZ'lT,. .. ,e2A2~T] = eigenvalue spectrum of ' J ( T )  J ( T )  as T -CO. (9) 

For actual computation of exponents we use the standard method with Gram- 
Schmidt orthonormalization [14-151. Other numerical methods to obtain Lyapunov 
spectrum are shown in [16]. If we arrange the exponents in the decreasing order 
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Pi^..- 1 ,.."...."-., .._^I^ .Lo -"An, , I \  .%".. -. YmYY..". *p.L,a .". ..,* 
N = 16, h' = 0.1, amplc  = 100. The two 
spectra have different inilial conditions. ?hey are 
2, = random, lpil a 1, and zi = random, 
p ;  = random for lhe 'clustered' stale and the 
'uniformly random' stale, respeclively. 

i / N  
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spectra far h e  clustered slate. IC = 0.1, N = 
8,16,32. N = 8, 16,32. 

spectra for he uniformly random stale. h' = 0.1, 

.A, 3 A, 2 . . .  > A,,, then we have X i  f A,,+,-; = 0 from the symplectic 
condition (2), so that only the larger part of the whole spectrum is plotted. 

Figure 4 shows Lyapunov spectra of the model (1). Even for clustered states 
we have positive Lyapunov exponents, which indicates that the clustered states are 
chaotic. For clustered states, the rescaled spectrum 

{ A ( N ) ( q ) , O <  q < 2 1 A ( N ) ( i / N )  gf X i  as N + CO) (10) 

is almost invariant with a change in the system size N (see figure 5) [17-201. 
For the uniformly random state, however, the spectrum varies with increasing N 

(figure 6). This result is rather puzzling, because the scaling of the coupling constant 
I i / 2 n m  is determined M that the behaviour of the model will he similar for 
all N if correlations between the particles are quite small. This may indicate the 
existence of a hidden correlation among particles in the (apparently) random state. 
The exponential behaviour of exponents X j  a exp(-cj) in figure 6 is interesting, 
although its origin is not yet understood. 

Note that there is only one exponent whose value is 0, which corresponds to the 
conservation of the total momentum (3). All the other exponents for a clustered state 
are positive, so that both the cluster itself and particles inside it move chaotically in 
time. Also, we can see a clear distinction between the spectra of a clustered state and 
a non-clustered (random) state, particularly for the exponent AN-,.  This implies that 
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two distinct chaotic regions coexist in phase space. (See section 5 for the coexistence 
of chaotic seas, which is shown in a two dimensional section of the phase space in 
figure 11.) 

The existence of the almost zero exponent A N - ,  in the clustered state brings us 
to a viewpoint based on the following 'heat-bath picture'. 

Suppose we have a cluster composed of N - e particles. As long as most of the 
particles are in the cluster (i.e. N B e) ,  it is natural to approximate the whole N- 
particle state by a composition of ( N  - e)-particle dynamics and the other e particles 
acting as a heat bath for the cluster. Then the motion of ( N  - [)-particle dynamics 
is approximated by the mupled-map system of ( N  - e )  particles with noise, and we 
expect another null exponent for the (N-l)-particle dynamics. In this approximation, 
the heat bath can be regarded as behaving independently of the cluster as long as we 
neglect its interaction with the cluster. Hence the temporal average momentum of the 
neat bath i., approximated by zero, which ieads to another zero Lyapunov exponent. 
As is observed in figure 2, for example, a 'heat-bath' particle (a particle which does 
not belong to the cluster) moves almost freely over some period. 

Although the heat bath picture is a zeroth approximation and the interaction 
between the cluster and the other particles must increase the value of the exponent, 
the existence of a small exponent in addition to the null one is consistent with the 
auuvt: ~ILLUIG. NI ut: uiiiri cxpuricrirs, mcir vaiueb aic IUWCI~U siignuy b i i i ~ c .  LIIG 

chaotic instability is lowered due to the decrease in the number of degrees of freedom 
involved. 

This 'heat-bath' picture can be confirmed by the observation of Lyapunov vectors 
of the model. An analysis of Lyapunov vectors for lattice models is given in [Zl]. 
Lyapunov vectors are the principal axes of the ellipse evolving in the tangent space 

evolution, we will see the directions in which instabilities arise. Hence if we 
obtain Lyapunov vectors for the time-reversed system, Lyapunov vectors represent 
the directions from which instabilities arise. 

Fxamining each vector, we can judge whether the instability associated with a n  
exponent arises from the clustered motion (macroscopic motion) or from internal 
thermal noise. Since each 2N-dimensional Lyapunov vector consists of N pieces of 
2dimensional vectors, it represents infinitesimal displacements of each particle 

T Konishi and K Kaneko 

..; --..-- F-. .̂L̂ _ ~ - . ~  _L.:_ ..-. --- 3- _1 ^I.^...... ^Z..^^ .L̂  

9.. fig-.. 7). If "'p f..!!..,.+I *e Lyzpunn.; ;e.C-g: e%r&ncP wit!? teF.nnrll 
I,-*". 

(dz("),dp(k)) (E  RZN) 3 { u j k )  (drj"),dpj')) E R2, i = 1 ,2 , .  . . , N }  (11) 

where the index k denotes the vector corresponding to the kth exponent A,. 
If the vectors {vj"),i = 1,2 , .  . . , N }  are well aligned, the corresponding 

Lyapunov vector is related to an instability of the collective motion of the cluster 
(see figure 8). If, on the other hand, the directions of vectors (11) are scattered, the 
corresponding instability comes from the uncorrelated motion of each particle and is 
regarded as thermal noise. 

The degree of alignment of each vector (11) corresponding to A, can he measured 
by the following quantity 
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forward evolution 

f = O  f = T  

backward evolution 

projection to the .i=/"i dxi I l h  particle 
dPi 1 

well aligned not aligned 
-macroscopic instability -local instability - vi * v. small -vi .vi large I 

F@m 7. Lyapunav veclols far forward and 
backward time evolution. Initial infinitesimal 
spheres an show to grow into ellipses The black 
arrow lepment the veclors that correspond lo the 
largest Lyapunov exponent, and the while ones to 
the smallesl Lyapunav exponent. Namely, length 
of the Mack armw cx -(A-), and lenglh of the 
white arrow cx ap(X,.) for forward evolution, 
and length of the black arrow c( ap(-X,), 
and length of the white arrow m exp(-Amin)foor 
backward evolution. Rememher that A- = 
-Ami. BS our model is synplectic. 

Figure 8. A Lyapunov vector is projected onto each 
panicle. ' h e  difference between macroscopic and 
local instabilities am shown schemalically. 

where we adopt the following normalization of a Lyapunov vector 

and the inner product of vectors for the kth exponent is defined by 

Figure 9 shows each Lyapunov vector associated with two exponents; A, the largest 
one, and AN-,.  As is seen in the figure, the Lyapunov vector for A N - ,  looks 
quite well aligned. Thus the instability which corresponds to the exponent ,AN-, 
comes from the instability of the motion of the cluster. This is why the Lyapunov 
spectra (figure 4) of the clustered state and the random state differ for this exponent. 
This difference is quantitatively illustrated in table 1, where the values of the inner 
product of vectors s( , )  are shown for the Lyapunov Vectors corresponding to the 
exponents A,, A,, . . . ,A,, . . . ,A,-,, A,. Since the matrix ' J ( T ) J ( T )  is symmetric, 
the 2 N  x 2N-matrix {v!"} ,  i = 1,2, ..., N ,  k = 1,2, ..., 2 N  is orthogonal and a 
sum rule E:=, s(') = 0 holds. 

b lues  of s(') are bounded as 

- $ (fully random direction) < s(') < $( N - 1) (fully aligned). (15) 
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Up to the ( N  - 2)th vector, the inner product is close to -1/2, consistent with 
the random motion. For the ( N  - 1)th vector the degree of alignment clearly differs 
between the random and clustered motions. For the random one, it is still close 
to -1/2, while the inner product is almost 0 for the clustered motion, implying the 
existence of some tendency for alignment. (The Nth vector is almost completely 
aligned since it represents a uniform translation corresponding to the conservation 
law of total momentum (3).) 

lhbk 1. Values of the inner producl d k )  (equation (14) for N = 8, s e  tat).  

IC d k )  (uniform) a ( * )  (cluster) 

1 -0.499 -0.499 
2 -0.498 -0.498 
3 -0.499 -0.498 
4 -0.491 -0.489 
5 -0.483 -0.497 
6 -0.455 -0.470 
7 -0.451 -0.078 
8 3.378 3.033 

5. Lifetime of clusters and phase space structure 

Now we discuss the lifetime of clustered states. Since all parts of the chaotic sea 
in phase space are topologically and dynamically connected [22,23] in a Hamiltonian 
system with many degrees of freedom, the chaos in the clustered state and the 
uniformly random chaos must be connected through a (thin) path. Thus the clustered 
states must have finite lifetime. Through time evolution, a clustered state switches 
to another chaotic state, random chaos. Of course, the reverse process is also 
possible. In the course of time evolution, the two types of motion are distinguished as 
quasistationary and metastable states, which makes possible the previous quantitative 
distinction between the two states. 

Crossover from clustered to random chaos reminds us of the ‘induction 
phenomenon’ (241. It is a transition from regular oscillation to chaotic motion found 
in weakly non-integrable systems. Nekhoroshev’s theorem [ZS-281 can be applied to 
estimate the length of the period for the duration of a regular oscillation [29]. This 
estimate is possible because the induction phenomenon is a transition h.om a state 

I 1 

Figure 10. ?he lifelime distribution of duslered states. 
0 tow0 Initial mndition: zi = random. D; = 0. Svslem size . . -  ~~~~~~~ ~ 

lifetime N 8, h‘ = 0.25, 101al number of orbiu = Id. 
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0.50 

-0.50 
-0.50 PI 0.50 

FLgure 11. A m slice (pl,pz) of phase space. N = 4, IC = 0.3. In the (4 x 1 =) 
8dimensional phase space, lhe slice is taken by setting the following six mnstraints; 
21 = -0.~75, zz = -0.025. 13 = 0.025, p ,  = 0, d z ;  = x i p ,  = 0. ?he last two 
mnstraints mme from mnservstion of the lotal momentum (3) so that the poinls shown 
in lhe figure have the same value of total momentum. We set 512 x 512 lattice points on 
the Zdimensional section, take lhe points as initial mnditions for time evolution. Among 
lhe initial mnditionq dots are plotted for the inilial points such that lhe temporal decay 
rate of lhe finite time maximal Lyapunov mponents X - ( i )  measured for i = 200 
s t e p  is faster than llfi arc shown. The funnion I / f i  is adopled for mnvenienCe lo 
distinguish between X,,( i )  = mnstant (chaos) and A,(i) cx l / i  (tori. islands). 

in the vicinity of a torus to chaos. Our transition from clustered to random states 
is clearly different from induction phenomena, since it is a switching between two 
types of chaos. For such types of crossover, we have as yet no theoretical method 
to estimate the lifetime of each state. The lifetime of clustered states also increases 
rather rapidly with the decrease of nonlinearity. This dependence suggests a possible 
estimate for the lifetime similar to Nekhoroshev’s. 

Figure 10 shows the distribution of the lifetime of clustered states for an %particle 
system. The initial condition is chosen to be zi = random, p i  = 0. This initial 
condition is chosen because clustered states appear to have large measure around the 
origin (z,p) = 0. For each orbit, the lifetime is defined as 

lifetime of clustered state 

where the quantity Z is defined in equation (6). 
0.25,0.3,0.4,0.5 have an exponential tail. 

steps for which the value of Z > 1 (16) 
The distributions for I< = 
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1-  
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&' 0.1: 
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b 6 . .... - 
N = i 6  

0 

N = 4  ",,' 
% 
?h 
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-0.50 PI 0.50 
F e t e  U. Same slice in the phase space as in figure 11. Among 512 x 512 initial 
conditions, pointr at which Z > 1 are s h w n ,  which are m n s i d d  to belong to 
clustered state. 

U 1 
0.1 

P,,, : length of the cell in P-space 

I "  I 

N.8, K~0.1 

1000 
length of each interval T 

Figure U. Relative volume of duslered states in 
the phase space, plotted as a function of hypelrube 
cell length, for N = 4 and N = 16. K = 0.3. A 
total of IC? initial p in t s  are sampled to check if 
they are in a clustered state. me ratios of clustered 
orbits in an Ndimensional hypercube with the edge 
length P,, in the momentum space are plotted. 

Flgurr 14. h r i a n a  of the shon-time (maximal) 
Lyapunw exponents for a clustered slate and the 
uniformly random state. In the dustered state the 
nriance shows an anomalous power-law behaviour 
implying long time currelation. whereas the nriance 
show normal convergence 10 0 in the uniformly 
random state. N = 8, K = 0.1. 
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The geometrical structure in phase space gives us a hint of a mechanism for the 
stabilization of the clustered state, as is shown in figures 11 and 12. Figure 11 shows 
a 2-dimensional slice of phase space for a 4-particle system. We measure the maximal 
Lyapunov exponent for a finite temporal interval t .  If the initial condition ( zu, pu) 
belongs to KAM tori the exponent Xmax(t) vanes as A, ( t )  a 1/t. In figures 11 and 
12 dots indicate initial conditions where X,,(t) < l/J, which can be considered as 
belonging to KAM tori, islands, or their remnants. Clustered states are again estimated 
by the condition Z > 1 and are shown in figure 12. We note that they spread over 
the web structures of KAM ton and islands. The outer region has a complicatedfrnctal 
structure as is shown in figure 13. In the figure, the relative volume of clustered states 
is plotted as a function of a length of the edge of the sampling cell P,,,. The volume 
V (  P") decays with a fractional power of the edge length P,, in the momentum 
space (e.g. V (  P") a Pmax-3,2 for N = 16.) This result means that the outer region 
of clustered states has a fractal structure. For the central region, clustered states 
occupy almost all the volume, which seems to be supported by KAM tori and islands. 

From the above observation, we reach the conjecture that the clustered state 
is strongly affected by the existence of remnants of KAM tori and islands. This 
conjecture is supported by examining the fluctuation properties of dynamical variables, 
e.g. Lyapunov exponents [29]. Suppose we measure a Lyapunov exponent for a finite 
interval, say T and denote it as X(T). Sampling X(T), we get a distribution of these 
short-time Lyapunov exponents. Here we study the 7'-dependence of the variance 
of this distribution. Since X(T) is calculated as a sum of stepwise expansion rates 
during T-steps as 

we expect 

T--  
(AX(TN2 a [ T-l 

Figure 14 clearly shows the existence of long time correlation in the clustered 
state but not in the random state. Thus the structure change from cluster to uniform 
chaos is understood as the transition from sticky motion to random motion without 
any spatiotemporal order. 

('8) 
0 < a < 1 when long time correlation exists 

without long time correlation. 

6. Discussion 

In this paper we have shown the existence of an ordering process (which we (1611 

a cluster) in Hamiltonian systems. This clustering is a remarkable novel feature 
in Hamiltonian systems distinguishable from uniform thermalization. The clustered 
states are chaotic and show crossover to uniform chaos, which is a chaos-chaos 
crossover. The theoretical study of the dynamical crossover between different chaotic 
seas for high-dimensional systems is an important area of future study, and is 
related to the recent study on the strong stochasticity threshold in highdimensional 
Hamiltonian systems [27,zS]. 

Clustered states are long-lived and quasistationary especially in weak nonlinearity. 
The origin of stability of clustered states can be found in the intricate structure of a 
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high-dimensional phase space. Indeed, torus-rich regions form a fractal structure in 
the phase space. For a regular orbit, this is the first discovery of such fractal structure, 
although it may be related to the fuzzy fat fractal for a stochastic layer [7]. 

The fluctuation of short-time Lyapunov exponents has revealed the sticky motion 
of a cluster. Preliminary data for the short-time diffusion coefficient [30] also 
support the existence of longtime correlation in a clustered state [31]. Lyapunov 
spectra and vectors have also demonstrated an internal mode for a clustered motion, 
clarifying order formation in a Hamiltonian system. Detailed Lyapunov analysis will 
be a powerful tool for exploring the high-dimensional phase space. An excellent 
application of Lyapunov analysis for a Hamiltonian map lattice is seen in [32]. 
Asymptotic behaviour of Lyapunov spectra for a system with a macroscopic state 
is also a subject for future study [17-201. 

Ordered motion in high-dimensional chaos has been extensively investigated in 
dissipative systems. Clustering is an important notion in dissipative globally coupled 
maps [33]. Switching among ordered motions through high-dimensional chaos k 
found, and termed as chaofic dinerancy [33,34]. Switching among our clustered 
motions and random chaos gives a clear example of chaotic itinerancy in Hamiltonian 
systems. We note that similar ordered motion is seen in molecular dynamics 
simulations for glass [35] and water [36]. Our clustered state may give a minimal 
basis for the tineoreticai understanding for the ordered motion in moiecuiar dynamics. 

Although the clustered state has a finite lifetime, the lifetime increases rapidly with 
the decrease of nonlinearity, suggesting some dependence analogous to Nekhoroshev's 
estimate. Thus, in a weakly nonlinear system, the clustered state is easily observed, 
and is stable over long time steps. This fact implies that our clustered state Will be 
much more frequently seen in a Hamiltonian system with continuous time, since a 

Hamiltonian. Clustering processes will hopefully be found in other physical systems, 
such as gravitational systems, microclusters of atoms, nuclei, and so on. Chaos will 
give a new light on their study, in addition to traditional view based on barrier 
structures of potential energy landscapes. 
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